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Abstract 

This work discusses an approach to modeling an ordinary differential equation by the 
Functional Voxel method (FV method). The proposed approach is an automated development 
of the isocline method and is based on the principles of differentiation and integration devel-
oped for FV modeling. The isocline method is analyzed as a mean of constructing a tangential 
field for solving the first and second order ordinary differential equation. The selected exam-
ples demonstrate the principle of constructing a FV model as a basis for obtaining integral 
curves. An algorithm for obtaining an integral curve of a differential equation by the means of 
the Functional Voxel modeling is described. A visual and numerical comparative analysis of 
the obtained results of the FV modeling with known examples is carried out. Unlike the iso-
cline method, where the result is a graphical construction of constant tangent lines, in the 
case of a Functional voxel model we get a graphical representation of the area of local func-
tions at each point of the integral curve corresponding to the solution of the problem.  
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Problem Statement 
The main purpose of the research is the fundamental question of the possibility of using 

Functional-Voxel modeling tools in problems based on obtaining a solution to a differential 
equation. The implementation of this problem is in demand due to the progressive develop-
ment of FV-modeling tools in design and control problems, i.e. - it is proposed to model algo-
rithms for solving such problems as: tracing the path with obstacle avoidance [1], algorithms 
for calculating physical characteristics [2,5], algorithms for solving mathematical program-
ming problems [6], differentiation and integration of the Functional-Voxel model of a func-
tion [7], etc. 

The isocline method was chosen as the basis of the research not by chance -it is based on 
the preliminary construction of a tangential field on a given area and the further application 
of its data in the construction of integral curves. The principle of FV-modeling is similar and 
requires the preliminary construction of an appropriate FV model to organize an algorithm 
for solving a problem. 

1. The isocline method in solving an ordinary differential 
equation 

A lot of research has been devoted to solving differential equations using various ap-
proaches, and each of these approaches has the right to exist and to be applied according to 
their benefits and advantages [8,9] 
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One of the graphical methods for solving an ordinary differential equation 𝑦′ = 𝑓(𝑥, 𝑦) is 
based on the construction of isoclines defined as lines along which the value of first derivative 
is constant [10, 11, 15]. At the same time, automation of this approach requires the generation 
of a tangential surface in the 𝑥𝑂𝑦 space and the construction of isolines on it, cut by unidirec-
tional segments (tangents to the integral curve). Figure 1 depicts an example of finding the 
integral curves for a differential equation 𝑦′ = 𝑓(𝑥), which is often demonstrated in various 
works: 

𝑦′ = 𝑥2 − 𝑥 − 2. (1) 
Here the isoclines are co-directed and parallel to the 𝑂𝑦 axis, so it makes no sense to dis-

play them. But the segments cutting them with a fixed step, demonstrating the direction of 
the tangent to the integral curve at a given point, visually represent the general solution of 
this differential equation. The disadvantage of this graphical approach is the difficulty of us-
ing these visual data obtained to build a fairly accurate picture of the integral curves. It is also 
difficult to contribute such an approach in automated calculations. To do this, it is necessary 
to express an indefinite integral from the initial differential equation and calculate the corre-
sponding coefficient C, which is a traditional analytical approach. 

The lack of analytical expression in the obtained graphical result of the isocline method 
does not allow the researcher to apply it with confidence in scientific calculations, since it ra-
ther carries the visibility of the integral curves’ shape and, as a rule, has the substantial loss of 
accuracy. Since the range of values of the isoclines in this case is a continuous surface, then 
there exists an integral curve passing through the origin at C=0. Let's conduct a numerical 
experiment and determine the remaining roots for such an integral curve. 

 

 
Figure 1 – An Example of the construction of integral curves by isoclines 

 
On integrating the expression (1) we obtain: 

𝑦 =
𝑥3

3
−

𝑥2

2
− 2𝑥 + 𝐶. (2) 

Let's find the roots of the resulting equation (2). Since here we deal with a cubic equation, 
then, in addition to the origin point, the 𝑂𝑥 axis can be intersected twice more. Equating the 
right part to zero and rearranging we obtain: 

𝑥(2𝑥2 − 3𝑥 − 12) = 0. (3) 

Obviously, the first root is 𝑥1 = 0 and it remains to solve the quadratic equation in paren-
theses to get the remaining roots: 

𝑥2 =
3 + √105

4
≈ 3,3117377,               𝑥3 =

3 − √105

4
≈ −1,8117377. (4) 

In Figure 1, the integral curve (2) shown in red is located in the middle and intersects the 
𝑶𝒙 axis at coordinates (4). It is clear that the other two integral curves are constructed for  
𝑪 = 𝟒 and 𝑪 = −𝟒. 



The functional voxel method (FV-method) [13] provides - on a given area of the analytical 
function - filling with the local functions describing a linear law for each minimal neighbor-
hood of a point on the area, which makes it possible to apply in further calculations not just a 
number, but the corresponding analytical expression with all the advantages that follow from 
this. 

Let's try to figure out how, applying the principles of functional voxel modeling, to auto-
mate the isocline method for computer application. 

2. FV-method for constructing an isoclines’ continuous 
surface 

In order to solve equation (1), we will define a certain area (by analogy with the selected 
example in Figure 1, we will choose the area 𝑥 ∈ [−5; 5], 𝑦 ∈ [−5; 5]). 

In the Functional Voxel method, the partial derivative 𝜕𝑦/𝜕𝑥 is considered as the ratio 
𝑐𝑜𝑠𝛼/𝑐𝑜𝑠𝛽, where 𝛼 and 𝛽 are the angles of deviation of the unit gradient vector from the axes 
𝑂𝑥 and 𝑂𝑦, respectively. We can say that: 

𝑦′ = 𝑥2 − 𝑥 − 2 = 𝑡𝑔𝛼. (5) 
Taking into account the following equalities: 𝑐𝑜𝑠𝛼 = 𝑐𝑜𝑠(𝜋/2 − 𝑎𝑟𝑐𝑡𝑔𝛼) and  

𝑐𝑜𝑠𝛽 = 𝑠𝑖𝑛𝛼 = √1 − 𝑐𝑜𝑠𝛼2 , we obtain coefficients for the arguments of the tangent equation 
for the point under consideration, but passing through the origin (local function): 

𝑐𝑜𝑠𝛼𝑥 + 𝑐𝑜𝑠𝛽𝑦 = 0. (6) 
Then we display the specified range of values for each of the cosines as a separate image. A 

legitimate question arises: why should one tangent surface be converted into two cosine sur-
faces? In fact, the answer “lies on the surface”. Cosine values are normalized to the interval 
[−1; 1], which makes it easy to convert them into a color palette [0 … 255] which is suitable for 
computer representation in the form of raster images: 

𝐶𝑜𝑙𝑜𝑟1 =
(𝑐𝑜𝑠𝛼 + 1)256

2
= (𝑐𝑜𝑠𝛼 + 1)128, 𝐶𝑜𝑙𝑜𝑟2 = (𝑐𝑜𝑠𝛽 + 1)128. (7) 

Such information is not only illustrative, but also relatively compact compared to a two-
dimensional array of corresponding real values. Additionally, the problem of representing in-
finitely large values for vertical tangents, etc. disappears. Taking the function 𝑦 = 𝑓(𝑥) as the 
argument 𝑦 on the area, we get two raster images responsible for storing 𝑐𝑜𝑠𝛼 and 𝑐𝑜𝑠𝛽 on a 
given area (Fig.2). Further, such images will be called M-images, as is customary in terms of 
the FV method. 

We show that the obtained graphical information in the form of two M-images is sufficient 
to automate the algorithm for constructing the integral curve shown in Fig.1. 

  
a) b) 

Figure 2 – An example of constructing M-images for surfaces: a) 𝑐𝑜𝑠𝛼 и b) 𝑐𝑜𝑠𝛽 



3. An algorithm for constructing an integral curve using 
two M-images 

In order to organize the sequence of actions of an algorithm for constructing an integral 
curve using the M-images obtained in Figure 2, it is necessary to determine the relation be-
tween the dimensions of the real area of the function specified by real numbers and the M-
image resolution, which is integer and contain information about the number of points in two 
directions of the raster. 

Following the problem discussed earlier, the function area is set by the parameters: 
𝑋𝑚𝑖𝑛 = −5, 𝑋𝑚𝑎𝑥 = 5, 𝑌𝑚𝑖𝑛 = −5, 𝑌𝑚𝑎𝑥 = 5. 

The dimensions of the M-image are 𝑋𝑏𝑚𝑝 = 400,  𝑌𝑏𝑚𝑝 = 400. Let's determine the scaling 

factor along the axes, which ensures the transition from the function area to the image and 
back in the calculations: 

𝐾𝑥 =
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑋𝑏𝑚𝑝
, 𝐾𝑦 =

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

𝑌𝑏𝑚𝑝
. (8) 

Since the M-image contains 400 points along the 𝑂𝑥 axis, and the origin for the region is 
located in the middle, and there is also information that the desired integral curve passes 
through the origin, then it is proposed to build such an integral curve first in the positive di-
rection of the semi-axis from the point (0,0), and then in the negative direction. 

Let's set the starting point to the origin, recalculating it to the M-image coordinates: 

𝑋 =
(𝑥 − 𝑋𝑚𝑖𝑛)

𝐾𝑥
, 𝑌 =

(𝑦 − 𝑌𝑚𝑖𝑛)

𝐾𝑦
. (9) 

It is obvious that at coordinates (0,0) on the M-image, the point will be in the middle of the 
window with coordinates (200, 200). For the resulting point, there is a specific color on both 
M-images (𝐶𝑜𝑙𝑜𝑟1 и 𝐶𝑜𝑙𝑜𝑟2),which, when converted back, becomes the cosine value: 

𝑐𝑜𝑠𝛼 =
2𝐶𝑜𝑙𝑜𝑟1 − 256

256
, 𝑐𝑜𝑠𝛽 =

2𝐶𝑜𝑙𝑜𝑟2 − 256

256
. (10) 

To obtain a local equation at a point with coordinates (0,0), we find the third component of 
the gradient of the neighborhood of this point: 

𝑐𝑜𝑠𝛾 = −𝑐𝑜𝑠𝛼𝑥 − 𝑐𝑜𝑠𝛽𝑦. (11) 

In the case of the first point, when both coordinates are zero 𝑐𝑜𝑠𝛾 = 0, which means that 
the line described by this local function really passes through the origin. 

To determine the value of the next point of the integral curve, we perform a shift along the 
𝑂𝑥 axis by a step 𝐾𝑥: 

𝑦′ = −
𝑐𝑜𝑠𝛼

𝑐𝑜𝑠𝛽
(𝑥 + 𝐾𝑥) −

𝑐𝑜𝑠𝛾

𝑐𝑜𝑠𝛽
. (12) 

Having obtained the solution of the integral curve at the next point, we proceed to it: 

𝑥 = 𝑥 + 𝐾𝑥, 𝑦 = 𝑦′. (13) 

Now we calculate the 𝑋, 𝑌 coordinates again using the formula (9), we get the color 
𝐶𝑜𝑙𝑜𝑟1, 𝐶𝑜𝑙𝑜𝑟2  on two M-images at a new point (𝑋, 𝑌) in order to determine the new 𝑐𝑜𝑠𝛼 and 
𝑐𝑜𝑠𝛽 for it using the formula (10). We define 𝑐𝑜𝑠𝛾 for the obtained point using the formula 
(11) and proceed to the finding a new point of the integral curve (12, 13) and then repeat the 
process until one of the coordinates reaches the boundary of the region. 

Similarly, the algorithm is built in the opposite direction from a given point, with the only 
difference that the 𝑐𝑜𝑠𝛾 parameter is determined for the point (𝑥 − 𝐾𝑥), since we assume that 
the current point also belongs to the previous neighborhood. 

Figure 3 shows a bundle of integral curves for С=[-3,-1,-2,0,1,2,3], superimposed on the M-
image with 𝑐𝑜𝑠𝛼 value mapping for clarity. 



On the resulting integral curve, it can be seen that the roots of its function at C=0 corre-
spond to the required values (4). 

Consider the example 𝑦′ = 𝑓(𝑥, 𝑦), where in addition to the argument 𝑥, the function 𝑦 it-
self is also present in the equation. To do this, we will also choose one of the cases often con-
sidered in classical textbooks [16]: 

𝑦′ = 2𝑥 − 𝑦. (14) 
An image with the construction of isoclines and the resulting integral curves, as well as the 

automatic construction of an integral curve by the FV method is shown in Figure 4. It is not 
difficult to make sure that the integral curve passing through the origin has a single root at 
the extreme point. We equate the derivative to zero to construct the isocline of extremes: 

𝑦′ = 2𝑥 − 𝑦 = 0 или 𝑦 = 2𝑥. (15) 
 

 
Figure 3 – The result of the FV-constructing an integral curve for (1) 

 
The resulting straight line of the isocline passes through the origin, which means that the 

point of the extremum of the integral curve for С=0 will be located at the origin. We will set 
the starting point for the algorithm to work right there and start the process of constructing 
the integral curve. The result confirming the correctness of the algorithm is shown in Figure 
4a. In Figure 4b, the integral curve passing through the origin is shown in red. 

 

  
a b 

Figure 4 – The result of the FV-constructing integral curves for (14): a) the isocline meth-
od, b) FV-method 



For the algorithm to work, it is necessary to pre-construct M-images of the mapping on a 
given area of 𝑐𝑜𝑠𝛼 and 𝑐𝑜𝑠𝛽 as shown in Figure 5. 

 

  
𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽 

Figure 5 – mapping the isocline region as a FV-model for the equation (1.14) 
 
As the next example, it is proposed to consider the quadratic expression of the differential 

equation: 
𝑦′ = 𝑦 − 𝑥2 + 2𝑥 − 2. (16) 

The result of the construction of isoclines and obtaining the integral curves in the tradi-
tional version is shown in Figure 6. 

 

 
Figure 6 – The construction of integral curves of the equation (16) by the isocline method 

 
Let's visually highlight for ourselves in Figure 6 the integral curve passing through the 

origin. For the algorithm to work, we define the corresponding M-images describing a given 
area of the tangential field decomposed into cosines. The result of constructing such M-
images is shown in Figure 7. Figure 8 demonstrates the solution of the problem by the FV-
method. 

 



 
Figure 7 – Representation of the isocline region in the form of a FV model for the  

equation (16) 
 

 
Figure 8 – Integral curves of the equation (16) 

 
Let's consider the last test example of a first-order differential equation involving a period-

ic function: 
𝑦′ = sin (𝑥 + 𝑦). (17) 

We will compare the result with the traditional image included in many textbooks (Fig.9) 
[15]. 

 

 
Figure 9 – Construction of integral curves of the equation (17) 



Let's construct M-images to solve equation (17) (Fig. 10) and apply the proposed algorithm 
for constructing an integral curve to these two M-images. The result of constructing integral 
curves for equation (17) is shown in Figure 11. 

The conducted research shows that the application of Functional Voxel modeling to solving 
first-order ordinary differential equations makes it possible to transfer the graphical isocline 
method to an automated basis, with the only difference that the information field formed in 
this case does not display the tangent value, but is based on information about the compo-
nents of the unit gradient vector in the investigated area of the differential equation. 

 

 
Figure 10 – Representation of the isocline region in the form of a FV model for the equa-

tion (17) 
 

 
Figure 11 – Construction of an integral curve for equation (17) passing through the origin 

4. The solution of the second order ordinary integral 
equation of by the isocline method 

Since the isocline method is also applied to solving some second-order equations, we will 
demonstrate the solution of an example taken from [14] which is displayed at (Fig.12) for 
comparison. Consider the equations in a reduced form: 

𝑑2𝑥

𝑑𝑡2
+ 𝑓 (

𝑑𝑥

𝑑𝑡
, 𝑥) = 0. (18) 

A new variable 𝑣 = 𝑑𝑥/𝑑𝑡 is introduced. Then we have: 
𝑑2𝑥

𝑑𝑡2
= 𝑣

𝑑𝑣

𝑑𝑥
 (19) 

and equation (18) takes the form of a first-order equation: 
𝑑𝑣

𝑑𝑥
=

𝑓(𝑣, 𝑥)

𝑣
. (20) 



Let's consider an example of solving a differential equation of the form: 
𝑑2𝑥

𝑑𝑡2
+ 𝑥 = 0. (21) 

We assume that 𝑑𝑥/𝑑𝑡 = 𝑣. Then equation (21) takes the form: 

𝑣
𝑑𝑣

𝑑𝑥
+ 𝑥 = 0, или      

𝑑𝑣

𝑑𝑥
= −

𝑥

𝑣
. (22) 

 

 
Figure 12 – Construction of integral curves by the isocline method for the equation (19) 

 
We apply the Functional Voxel approach to solving equation (19). Let us pay attention to 

the fact that in all examples of such a reduction of the initial differential equation to the first 
order, division by the function 𝑣 is implied, which leads along the 𝑂𝑦 axis to a discontinuity of 
the continuous surface (Fig.13), since in order to obtain M-images, the function (22) is trans-
formed into a function: 

𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦
. (23) 

To construct integral curves, we use the regions 𝑥 ∈ [−5; 5], 𝑦 ∈ [−5; 0) and 𝑥 ∈ [−5; 5], 𝑦 ∈
(0; 5] alternately, i.e. we divide the domain of definition of a function into two subdomains 
before and after the 𝑂𝑦 axis. Figure 13 a and b show the result of constructing integral curves 
at С=1, С=2 and С=3 for the positive area, and at С=-1, С=-2 and С=-3 for the negative. 

 

 
a 

 
b 

Figure 13 – Construction of integral curves by the FV method for the equation (19):  
a) the solution in area 𝑦 ∈ (0; 5], b) the solution in area 𝑦 ∈ [−5; 0) 

 
It is not difficult to combine these two images in the further calculations to obtain the 

comprehensive picture. 



Conclusions 
The conducted research has shown the possibility of using the Functional Voxel modeling 

in solving ordinary differential equations of the form 𝑦′ = 𝑓(𝑥, 𝑦). The solution of the equa-
tion of the form 𝑦′′ = 𝑓(𝑥, 𝑦′, 𝑦) is demonstrated. In the future, it is proposed to consider the 
use of the FV modeling in solving applied problems based on the application of the first and 
second order ordinary differential equations, the development of the principles for the algo-
rithm for ordinary differential equations of the form: 𝑧′ = 𝑓(𝑥, 𝑦, 𝑧)  and 𝑧′′ = 𝑓(𝑥, 𝑦, 𝑧, 𝑧′). 
Since the Functional Voxel model allows us to analytically describe complex geometry in a 
given area, then its application in problems of fluid or gas motion as a basis for modeling the 
differential laws formed in this case seems to the authors very promising and relevant.    
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